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Abstract 

To perform uncertainty, sensitivity or optimization analysis on scalar variables calculated by a cpu time expensive computer 
code, a widely accepted methodology consists in first identifying the most influential uncertain inputs (by screening techniques), 
and then in replacing the cpu time expensive model by a cpu inexpensive mathematical function, called a metamodel. This paper 
extends this methodology to the functional output case, for instance when the model output variables are curves. Our screening 
approach is based on the analysis of variance and principal component analysis of output curves. Our functional metamodeling 
consists in a curve classification step, a dimension reduction step, then a classical metamodeling step. An industrial nuclear 
reactor application (dealing with uncertainties in the pressurized thermal shock analysis) illustrates all these steps. 
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1. Introduction 

The global sensitivity analysis (GSA) process is a key step for the development and the use of predictive complex 
computer models. In practice, when dealing with GSA methods, four main problems can arise: 
- Physical models can involve complex and irregular phenomena sometimes with strong interactions between 

physical variables. This problem is resolved by using variance-based measures (Saltelli et al., 2000); 
- Computing variance-based measures can be infeasible for cpu time consuming code. Metamodel-based 

techniques (Fang et al., 2006) solve this problem and provide a deep exploration of the model behavior; 
- Numerical models can take as inputs a large number of uncertain variables (typically d > 10). Applying a 

screening technique (Saltelli et al., 2000) allows to rapidly indentify the main influent input variables; 
- Numerical models can produce functional output variables, for instance spatially or temporally dependent. This 

problem has paid only little attention in the GSA methodology (Campbell et al., 2006; Marrel et al., 2010). 
In this communication, we present an overall methodology applicable to output curves of cpu time consuming 

computer models. During the presentation, we will also present some algorithms in the case of output spatial maps. 
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This methodology is applied to an industrial application: the pressurized thermal shock analysis. This quantitative 
analysis aims at calculating the vessel failure probability of a nuclear pressurized reactor. One major challenge in 
such calculations is to propagate input uncertainties in thermal-hydraulic models, by using Monte Carlo methods 
which require several thousands of runs. However, such models are cpu time consuming (5 hours per run), involve 
several tens of uncertain inputs (d = 31) and the output variables of interest are several time-dependent curves 
(temperature, primary pressure, exchange coefficient) discretized in T = 512 values. 

2. Overall methodology 

2.1. Screening with generalized sensitivity indices 

The screening step is achieved by using a factorial fractional design of resolution IV (requiring N=64 runs). A 
principal component analysis is applied on the 64 output curves and all the first order variance-based measures are 
obtained for each retained component. Therefore, the generalized sensitivity index (Lamboni et al., 2009) is 
obtained for each input. By ordering the inputs, we reduce the number of input variables to d’ =12 main variables. 

In order to fit a metamodel depending on these 12 inputs, a specific space filling design (Fang et al., 2006) of size 
N’ = 600 is then built and these N’ new runs are performed with the computer code. 

2.2. Curve classification 

Building a functional metamodel on these 600 output curves first requires a clustering stage. Indeed, the model 
outputs can follow different physical behaviors, each being represented by several curves. The method implemented 
first computes the Euclidian commute-time distance (Yen et al., 2005) between every pair of curves. An ascendant 
hierarchical classification step then provides the clusters C1,…,CK. The model inputs are classified accordingly in 
the same time with a non-parametric technique like k-nearest neighbors. 

2.3. Dimension reduction and functional metamodeling 

The focus is now on a specific cluster of curves Ck. We only assume that the output curves are sampled from a 
connected smooth manifold. The goal is to obtain small finite dimensional representations ri of the curves to handle 
them easily through calculations. A modified version of the “Riemaniann Manifold Learning” (RML) algorithm of 
Lin and Zha (2008) is used, combined with a global alignment method (Teh and Roweis, 2003). The relation 
between sampled inputs xi and vectors ri is learned with any metamodel (here we choose the projection pursuit 
regression algorithm). Thus, so far, the metamodel can predict an estimated representation r* from a new input x*. 
The last step consists in expanding r* into a curve, and is achieved using specific features of the RML algorithm. 
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