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Abstract 

A new unified global sensitivity analysis framework is introduced for systems whose input probability distribution can be independent and/or 
correlated. For correlated inputs, three sensitivity indices are defined to fully describe the total, structural (reflecting the system structure) and 
correlative (reflecting the correlated input probability distribution)  contributions for an input or a subset of inputs. The magnitudes of all three 
indices need to be considered in order to quantitatively determine  the relative importance of the inputs. For independent inputs, these indices 
reduce to a single index consistent with previous variance-based methods. This analysis is especially useful for the treatment of laboratory and 
field data. 
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1. Main text  

The objective of a global sensitivity analysis is to rank the importance of the system inputs (x) considering their 
uncertainty and the influence they have upon the uncertainty of the system output y [1-3]. In global sensitivity 
analysis variance-based methods are commonly used [4-7] for quantifying the sensitivity of the output to the inputs 
in terms of a reduction in the variance of y: 

 
                                        Si =Vi / V(y) = Var[E(y|xi)]/Var(y)                                                                      (1) 
                                       Sij =Vij/ (y) = (Var[E(y|xi,xj)]-Vi-Vj)/Var(y)                                                       (2)   
                                           … 

where E(·) and Var(·) represent the expected value and variance; Si and Sij are referred to as the main and 1st-order 
interaction effects for xi and xi,, xj, respectively. When all of the inputs are independent, a simple decomposition of 
the output variance V(y) is possible 

                                                                                               (3) 

 
 

 
where Vpj are conditional variances of  y for a fixed subset of inputs  xpj.  Then, the sensitivity index Spj   satisfies 
0 Spj=Vpj/V(y
comparing the magnitudes of the sensitivity indices.                      
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When the inputs are correlated, some ambiguities arise in the definitions of sensitivity indices given by the 
variance-based method. The conditional variances will generally depend on the existence of correlations in the input 
variables. Adopting the same definition of sensitivity indices given by the variance-based methods for a given subset 
of inputs can lead to contributions from other correlated inputs contaminating the result [8]. This problem was also 
observed by Oakley and O’Hagan [1]. They demonstrated that V(y) cannot be decomposed into a sum of squares as 
given in eq.(3), and the Vpj’s do not partition V(y) for systems possessing a correlated input probability distribution. 
Therefore, the resultant relative importance of the inputs is questionable based on comparing the magnitudes of the 
sensitivity indices. 

Here we introduce a new unified global sensitivity analysis framework for systems whose input probability 
distribution can be independent and/or correlated. In the ANOVA decomposition [5] an n-variate function can be  
represented as 

                                                    (4) 

where f0=E(y) and  E(fpj(xpj))=0 for all the non-constant component functions above, the last term is determined by 
the difference of y and all other terms on the right, thus f(x) is exactly equal to y. Suppose that y can be 
approximated by np(<<  2n-1)  non-constant component functions in eq.(4) 

                                                   .                                                                              (5)                      

When all the fpj’s are determined from a set of input-output data by an unbiased method (e.g., least-squares 
regression), the difference between y and its approximation  is orthogonal to the subspace spanned by all 
fpj (j=1,2,…,np) in the Hilbert space [9]. Using this condition, it can be readily proved that V(y) can be decomposed 

as the sum of all the covariances, Cov(fpj,y), and the average square error  
 

.                          (6) 

If  is sufficiently small compared to V(y) (i.e., (xpj) ) is a good approximation for f(x), the sum of the 
covariances forms a good decomposition of V(y). When the fpj’s are all of the component functions in eq.(4), V(y) is 
exactly partitioned by all the Cov(fpj, y)’s. 
     The covariance Cov(fpj, y) is the total contribution of fpj composed of its structure piece (reflecting  fpj’s 
contribution in the system structure y=f(x)  and a correlation piece (reflecting the influence of the interaction 
between fpj and the other fpk’s  through the correlated input probability distribution). Fixing some inputs may 
influence the distributions of the other inputs, and the total effect can decrease or increase the variance of the output, 
which yields a positive or negative Cov(fpj, y). For independent inputs all of the fpj’s are mutually orthogonal, i.e., 
Cov(fpj, fpk)=0, which gives Cov(fpj, y)=Var(fpj)=Vpj, and eq.(6) reduces to eq.(3). Therefore, eq.(3) is only a special 
case of eq.(6) for systems with independent inputs. 
     For systems with correlated inputs we define three sensitivity indices Spj, ,   for fpj as follows: 

                                                                                  (7) 

                                                                                                  (8)   

                                                                                                              (9) 

where s denotes the sth sample, and N is the total number of samples,  is the average value of y. , which is 
always non-negative, reflects the contribution of xpj through fpj  in the system structure f(x) (denoted as the  structural 
contribution) and can be used to identify the important inputs in the system structure., , which can be positive or 
negative, reflects the contribution of xpj by the interaction of fpj and other fpk’s due to the correlated input probability 
distribution (denoted as the correlative contribution).   Spj  is the total contribution of xpj through fpj. When  is 
small, the sum of all Spj’s will be close to unity. The magnitudes of all Spj, ,  need to be considered in order to 
quantitatively determine the relative importance of the inputs acting either independently or collectively.  When all 
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inputs are independent and the fpj’s are mutually orthogonal, then =0, and Spj= , which is the sensitivity index 
given by the variance-based methods. 

The estimation of sensitivity indices is simple after the component functions fpj’s in eq.(5) are determined by a 
suitable numerical method from a given set of data. The total sensitivity indices and also can be calculated 
by adding together all the sensitivity indices containing xi. When , the resultant total sensitivity indices can 
be considered as reliable. This analysis technique can be applied to mathematical models, as well as measured data. 
The definition of sensitivity indices given by the variance-based methods for systems with independent inputs is a 
special case of the new unified treatment. 
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