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In [LOO08], it was proposed that a concentration-of-measure inequality known as Mc-
Diarmid’s inequality [McD89] be used to provide upper bounds on the failure probability
of a system of interest, the response of which depends on a collection of independent
random inputs. McDiarmid’s inequality has the advantage of providing an upper bound
in terms of only the mean response of the system, the failure threshold, and measures of
system spread known as the McDiarmid subdiameters. A disadvantage of McDiarmid’s
inequality is that it that takes a global view of the response function: even if the response
function exhibits large plateaus of success with only small, localized regions of failure,
McDiarmid’s inequality is unable to use this to any advantage. We propose a partition-
ing algorithm that uses McDiarmid diameters to generate “good” sequences of partitions,
on which McDiarmid’s inequality can be applied to each partition element, yielding ar-
bitrarily tight upper bounds. We also investigate some new concentration-of-measure
inequalities that arise if mean performance is known only through sampling.

Let F : X := X1 × · · · × Xn → R be a response function of interest; the event [F ≤ θ]
is considered to be a failure event. McDiarmid’s inequality bounds the failure probability
uniformly in terms of the mean response and a measure of system variability known as
the McDiarmid diameter:

P[F ≤ θ] ≤ exp

(
−
2(E[F ]− θ)2+
D[F ]2

)
, (1)

where the McDiarmid subdiameters Dj [F ] for j = 1, . . . , n are defined by

Dj [F ] := sup

{
|F (x) − F (y)|

∣∣∣∣ x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X ,

xk = yk ∈ Xk for every kNeqj

}
(2)

and the McDiarmid diameter is D[F ] :=
(∑n

j=1
Dj [F ]2

)1/2

. The inequality (1) can be

improved to take account of the local behaviour of F by partitioning the parameter space
and using the conditional/restricted expected values and diameters: if P is any partition
of X into pairwise-disjoint measurable rectangles, then it holds that

P[F ≤ θ] =
∑
A∈P

P(A)P[F ≤ θ|A] ≤
∑
A∈P

P(A) exp

(
−
2(E[F |A]− θ)2+
D[F |A]2

)
. (3)
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The upper bound (3) is valid for any rectangular partition P ; our interest lies in
constructing P such that the right-hand side is only a small overestimate of P[F ≤ θ]. We
propose a recursive partitioning algorithm that uses the local McDiarmid subdiameters
as sensitivity indices:1

Given Pm from the previous iteration of the algorithm, for each A ∈ Pm: find
the direction j such that Dj [F |A] is maximal, then bisect A by a codimension
1 hyperplane normal to direction j through the centre of A; include the two
“child” sets in Pm+1.

It is important to note that this algorithm avoids the curse of dimension that affects the
näıve strategy of bisecting every box A in every coordinate direction at every iteration: the
number of boxes at most doubles at each iteration, rather a 2n-fold increase. Furthermore,
the same subdiameters Dj [F |A] that are used to produce the upper bound (3) are used
to select the coordinate direction of greatest parameter sensitivity and thereby refine the
upper bound.

The algorithm described above satisfies a convergence theorem: if F is continuous,
then this algorithm produces a sequence of partitions (Pm)m∈N such that

P[F ≤ θ] = lim
m→∞

∑
A∈Pm

P(A) exp

(
−
2(E[F |A]− θ)2+
D[F |A]2

)
. (4)

While it is to be expected that the order of convergence will depend on the regularity of F ,
piecewise-smooth examples investigated to date show that the overestimate associated to
Pm is approximately |Pm|

−1/2 times the overestimate associated to the global McDiarmid
bound (1).

In many applications, the local means E[F |A] in (3) are known only through sampling.
The question of with what level of confidence we can conclude that

P[F ≤ θ] ≤
∑
A∈P

P(A) exp

⎛
⎝−2

(
Ê[F |A]− α(A)− θ

)2
+

D[F |A]2

⎞
⎠ , (5)

for suitable “confidence shifts” α(A) > 0, can be answered using the independent con-

centration of each of the empirical means Ê[F |A] about the corresponding local mean
E[F |A]; geometrically, this amounts to estimating the measure of a subset of RP by that
of an orthant (a product of half-lines). However, given additional information on F , it is
possible to apply new concentration-of-measure results to obtain greater confidence in a
given empirically-derived upper bound for P[F ≤ θ]; the geometric analogue is estimation
of the measure of a subset of RP by that of a half-space.
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1There are variants of this algorithm in which the bisection is done through the barycentre of A, and
in which only those A ∈ Pm that are “non-trivial” (i.e. infx∈A F (x) < θ < supx∈A F (x)) are bisected.


